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Abstract

A new model for the energy transfer mechanism in the large-scale turbulent kinetic

energy equation is proposed. An estimate of the characteristic length scale of the energy

containing large structures is obtained from the wavelength associated with the structures

predicted by a weakly nonlinear analysis for turbulent free shear flows. With the inclusion

of the proposed energy transfer model, the weakly nonlinear wave models for the turbulent

large-scale structures are self-contained and are likely to be independent flow geometries.

The model is tested against a plane mixing layer. Reasonably good agreement is achieved.

Finally, it is shown by using the Liapunov function method, the balance between the

production and the drainage of the kinetic energy of the turbulent large-scale structures is

asymptotically stable as their amplitude saturates. The saturation of the wave amplitude

provides an alternative indicator for flow self-simLlarity.



Introduction

Many experiments have reported the presence and the importance of large-scale coher-

ent structures in turbulent free shear flows for different flow configurations and operating

conditions. For example, Winant and Browand 1 and Brown and Roshko 2 first observed

these structures in low speed free shear layers and Papamoschou and Roshko 3 in supersonic

free shear layers. Morris and Giridharan 4 and Liou and Morris 5 have constructed turbu-

lent models to simulate the turbulent large-scale structures explicitly. The models they

developed are based on a weakly nonlinear theory. Briefly, the local characteristics of the

large-scale turbulent structure are described by linear instability waves. Their amplitude

are determined by evolution equations derived from the turbulent kinetic energy equation.

The predictions in Morris and Giridharan 4 agreed very well with measured data for the

growth of the compressible shear layer for a wide range of free stream operating conditions,

including the effects of free stream Mach number. Two models were developed and imple-

mented into a mean flow prediction scheme for an incompressible free shear layer in Liou

and Morris 5. The first models the averaged development of the shear layer and the second

simulates a single realization of the passage of a train of large-scale structures. The model

predictions have shown a reasonable agreement with measurements and demonstrated the

feasibility of the more general approach for other free shear flows. This short analysis is

built upon the weakly nonlinear wave models developed by Liou and Morris 5. A model

for the turbulent length scale is constructed and applied in the calculations of the energy

transfer from the large structures to the small structures. The new model characterizes

the energy transfer by the dynamics of the large-scale structure alone. This feature could

facilitate the application of the weakly nonlinear models to free shear flows of engineering

interests. These include turbulent free shear flows of complex geometries and at various

operating conditions.

In Liou and Morris 5, the random flow properties are split into three components,

], - F, + .f, + f_ (1)

The fluctuation with respect to the long time-average component, Fi, is separated into

a component representing the large-scale motion, fi, and one representing the residual

fluctuations,/_. The long time-average of the instantaneous value is denoted by an overbar:

- 1 _0 T1 Ldt (2)
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The thin-layer approximations are used to reduce the governing equations for the mean

flow to the following from:

ou ov _ o, (3)
O--x + Oy

uOU vOU O-- _y 1 02U (4)

For the large-scale fluctuation, a separable form of solution was assumed:

{u, v, p} = A(x) [_t(y), O(y),p(y)l exp [i(ax- wt)l (5)

The bold face quantities denote a complex solution whose real part describe the physical

properties of the large-scale structures, a (= a_ + iai) denotes a complex wavenumber and

w the frequency. The governing equations for the local distributions of the large structures

can be reduced to the Rayleigh equation in terms of 9 :

d c_2) - a_--_}_ = 0 (6){( - w )( dy2

The amplitude A(x) appears as a parameter in the local calculation for the fi, fi,_ and is

determined separately from the large scale turbulent kinetic energy equation:

Ok OUi

Uj Oxj -uiuj Oxj o + _ (_ <

0
(ui < u_u_ >) + viscous terms (7)

Oxj

where k = ½uiuj. k denotes the turbulent kinetic energy of the large-scale structure.

<> represents a short time-average with an average interval much smaller than T1 but

much larger than the characteristic time scale of the background small-scale fluctuation 7.

The interaction terms, the third term on the right hand side of equation (7), describe the

transfer of large-scale energy, presumably, to the small scales where energy is eventually

dissipated by viscosity. The detailed analysis of the weakly nonlinear wave models and the

numerical solution procedure used here can be found in Liou and Morris 5.

The Energy Transfer Model

The spectral energy transfer results from the interactions between turbulent fluctu-

ations of different scales. For the weakly nonlinear wave turbulence models, the energy

transfer is of crucial importance in the determination of the wave amplitude and need to

be considered carefully. Very little information, experimental and theoretical, are available
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regarding the stresses, - < uiu j >. Through dimensional argument, it may be assumed

that the energy transferred out of the large structures depends on 8,

U 3

cx T (8)

where u and I are the characteristic velocity and length scales of the energetic large eddies,

respectively. In one of the models that were developed earlier, which was referred to as

the Model I in Liou and Morris 5, it was assumed that,

u=k½ (9)

and

t=_ (10)

stands for the width of the mean flow defined by the transverse distance between points

where the streamwise mean velocity is 0.9 and 0.1. The predictions by employing the

Model I agreed with measurements for the mean velocity and the shear layer growth rate.

Here, we propose a new model of the energy transfer from the large scales to the small

scales. It explores a unique characteristic of the weakly nonlinear models. The model

expresses the spectral energy transfer by the dynamics of the large-scale structures alone,

regardless of the geometries of the mean flow.

The weakly nonlinear analysis seeks normal mode solution of the large-scale turbulent

fluctuation. Locally, they are described by the linearized Euler equation. On the other

hand, the spatial extent of each of the mode of the large-scale structures could be regarded

as being determined by the wavenumber, at. Therefore, the proposition here is to estimate

the characteristic size of the large scales as the wavelength associated with the structure

that are predicted by the weakly nonlinear analysis. That is,

where lw denotes the wavelength.

becomes,

2_"

I -- 1_0 -- -- (11)
Otr

With the wavelength as a length scale, equation (8)

C2 l_--_ (12)

This is the resulting model for the energy transfer from the large scale the the small

scale. This estimate is in accord with the classic assumption of turbulence theory that

dissipation ".. proceeds at a rate dictated by the inviscid inertia behavior of the large

eddies. "s. Computationally, since the wavenumber is already a part of the solution of the
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equationsfor the large-scalefluctuation, this model involves no extra efforts in estimating

the characteristic size of the energy containing large scales. This rather simple model

provides a closure to the equations of the large-scale structure and, therefore, render the

weakly nonlinear wave description of the large-scale structure self-contained. The self-

contained nature of the weakly nonlinear wave turbulence models may be important in

their future applications to other turbulent free shear flows.

Results and Discussion

The model is tested against an incompressible one-stream mixing layer. To make the

matter simple, we choose to predict only the averaged, mean quantities of the shear layer.

Note that, in addition to the mean flow prediction, Liou and Morris 5 also calculated the

time-dependent evolution of the turbulent mixing layer at the large scale. Since it is the

most unstable mode that interacts most strongly with the mean flow 5, for efficiency, the

most amplifying local instability is used to characterize the average, overall interactions

between the mean and the large scale motions. Therefore, in the present formulation, the

characteristic length scale l_ is determined only by the locally most unstable modes.

Figure 1 shows the estimated length scales for the two models, i.e., the mean width

model and the present wavelength model. The wavelength is about one order of magnitude

larger than the width of the mean flow, _f. The model constant, C2, therefore, can be

roughly one order of magnitude higher than the C1 used in Liou and Morris 5. Numerical

runs with different values of C2 showed that small changes in the value of C2 had no

significant effect on the flow development. Quantitatively,, for C2 = 22, the spreading rate

of the mean flow, d_f/dx = 0.142 and for C2 = 20, d_f/dx = 0.158, both of which are within

the experimental scatter. In the following figures, the results are shown for C2 = 20.

Figure 2 shows the predicted evolution of the streamwise mean velocity profiles with

axial distance. _? is a similarity coordinate,

Y - Yl/2 (13)
X -- X 0

where Yl/2 denotes the location where the local mean velocity is one half of the free stream

velocity. The predicted self-similar profiles agree well with that compiled by Patel ° ex-

cept at the low speed edge of the layer. Similar differences were also observed by Liou

and Morris s. They attributed this difference to the single mode representation of the

entire large scale spectrum and the uncertainties in the measurements in this region re-

sulting from the local large changes in the instantaneous flow direction. Figure 3 shows

the calculated Reynolds stress distributions in the self-similar coordinate. The difference

.5



between the large-scale Reynolds stresses calculated by the weakly nonlinear model and

the total Reynolds stress distribution measured by Patel does not necessarily mean that

the small-scale should be included. A better agreement may be obtained if a broad range

of instability waves are included. At the outer edge of the low speed side, the weakly

nonlinear model predicted that the momentum transport by the large-scale fluctuation is

counter-gradient, a phenomenon that has been observed in many experiments, l°,11

The streamwise evolution of the amplitude of the large-scale structures is shown in

figure 4. After a region of establishment, the amplitude reaches a saturated value. In this

region, the rate of the production of the large-scale turbulent kinetic energy from the mean

flow is balanced by the rate of energy transfer from the large scales to the small scales.

Note that, for the present energy transfer model, the amplitude equation becomes,

dA 2

dx = e3(x) A 2 - e4(x) A 3 (14)

G3 and G4 denote the normalized positive definite integrals of the production terms and

interaction terms across the layer, respectively. The critical points of the nonlinear equation

(14), where dA___:d_----0, are A1 = 0 and G4(x:)A2 = G3(x2). Simple analyses by applying

the Liapunov function method 12 show that A1 is an unstable critical point. Any small

disturbances to A1, say A_ would grow exponentially. In fact,

(A_)' ,._ e a3(xl) x (15)

A2, on the other hand, is asymptotically stable. A disturbance about the As, say A_,

would decay exponentially,
Ga(z2) z

(A22) ' _ e 2 (16)

Note that the value of G3 in the equations (15) and (16) are taken as their values at the

corresponding critical points. The saturated value of the amplitude, A:, is an asymptoti-

caUy equilibrium value. It indicates an asymptotically equilibrium state of the large-scale

structures. The simple instability analyses also show that any deviation away from this

equilibrium state would be damped out exponentially. Consequently, the saturation of the

wave amplitude may provide an indication of the the self-similarity of the flow in terms of

the development of the large-scale structures.

The model proposed here provides a physically reasonable and self-contained repre-

sentation of the energy transfer from the large scale to the small scale. For the mixing

layer tested here, the results seem rather encouraging. It may be argued that, with a more

realistic multi-mode representation of the large scale spectrum, modifications to the value

of C2 should be minimal in the application of this model to free shear flows of other more
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complex geometries. A calculation of the axisymmetric jets represents the best further

test of the model. Efforts to perform this non-trivial calculation is underway and will be

reported later.
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